Ground Water Canada

News
Competition for shrinking ground water: research

November 20, 2018  By Ground Water Canada


Santa Barbara, CA – The United States has less fresh and unfrozen ground water than previously thought, according to research by UC Santa Barbara scientists.

Ground water, which has been used to irrigate crops, satiate livestock and quench thirst in general for thousands of years, continues to be a vital resource around the world, the university said in a news release.

But according to research by Scott Jasechko and Debra Perrone, assistant professors at UC Santa Barbara, and their colleagues at the University of Saskatchewan and the University of Arizona, the world’s supply of fresh water may be more limited than previously thought.

Advertisement

Their findings, which appear in the journal Environmental Research Letters, document the depths at which ground water transitions from fresh to saline. The paper is the first to compare the depth of ground water wells to the depth of saline ground water that exists at the continental scale.

Like tea brewing in a kettle, the longer water stays in contact with rock, the more likely minerals in the rock may dissolve into it. This creates a gradient of salinity, from fresh waters at the top through brackish and into saline conditions as you sample farther down. This latest work demonstrates that drilling increasingly deeper wells risks pumping saline water in some regions. “In some places, saline ground water is shallower than previously thought,” said Jasechko, an assistant professor at UC Santa Barbara’s Bren School of Environmental Science & Management.

“A major takeaway from this work is that fresh waters are finite,” he continued, “that overusing fresh water can disrupt food production, manufacturing and household water supplies.”

Added Perrone, an assistant professor in the campus’s environmental studies program, “Combining top-down and bottom-up studies can give us a window into where fresh, uncontaminated ground water exists, and where this window is getting smaller, either because the ceiling is coming down or the floor is coming up.”

In addition to salinity, oil and gas activities can restrict the amount of useable ground water an aquifer has to offer. Most conventional oil and gas wells reach far below the depth to which people drill for water. However, oil and gas companies often dispose of wastewater in injection wells, sometimes at depths where fresh ground water exists.

“In some basins, injections wells are installed shallower than the transition from fresh to brackish water,” said Perrone. “Our team’s results suggest that communities are competing for already limited ground water resources.”

“We should protect deep fresh ground water,” said Jasechko. “Water is abundant on Earth, but only a small share is fresh and unfrozen. The more we learn, the smaller and more precious that fresh and unfrozen fraction seems to be.”

The next research steps for the team involve exploring how ground water salinity and well depths vary in other areas of the planet where ground water provides vital drinking and irrigation waters.


Print this page

Advertisement

Stories continue below